Search Results/Filters    

Filters

Year

Banks




Expert Group











Full-Text


Issue Info: 
  • Year: 

    0
  • Volume: 

    33
  • Issue: 

    1
  • Pages: 

    11-19
Measures: 
  • Citations: 

    2
  • Views: 

    823
  • Downloads: 

    0
Abstract: 

بانک کشاورزی به عنوان عمده ترین موسسه رسمی اعتبارات کشاورزی عهده دار تامین منابع مالی مورد نیاز بخش کشاورزی می باشد. بخش اعظم منابع مالی بانک از طریق وصول اقساط تسهیلات اعطایی سر رسیده تامین می شود. وصول به موقع اعتبارات پرداختی سبب حرکت بانک در مسیر خودکفایی و تضمین تداوم فعالیت بانک در عرصه کشاورزی کشور می شود. لذا آگاهی از عوامل تاثیرگذار بر عملکرد بازپرداخت اعتبارات کشاورزی ضروری است و می تواند راهنمای مناسبی برای برنامه ریزان بخش اعتبارات کشاورزی کشور باشد و آنها را در اتخاذ راهبردهای عملی مناسب یاری دهد. بنابراین با هدف شناسایی عوامل موثر بر عملکرد بازپرداخت اعتبارات کشاورزی مطالعه ای با استفاده از اطلاعات پرسشنامه ای و بررسی پرونده های متقاضیان اعتبار مربوط به 149 کشاورز دریافت کننده اعتبار از بانک کشاورزی بیرجند در سال 1377، با بهره گیری از روش نمونه گیری تصادفی دو مرحله ای انجام شد. برای تجزیه و تحلیل داده ها از روش تجزیه و تحلیل تبعیضی استفاده شد. نتایج حاصل نشان داد که استفاده از ماشین آلات در مزرعه، طول دوره بازپرداخت وام، نظارت و سرپرستی بانک بر مصرف وام و بکارگیری وام در فعالیت های جاری اثر مثبت و معنی داری بر عملکرد بازپرداخت اعتبارات داشته اند. از سوی دیگر بروز خسارات طبیعی در مزرعه (مانند خشکسالی و آفات)، سطح تحصیلات زارع و طول زمان انتظار برای دریافت وام اثر منفی و معنی دار بر عملکرد بازپرداخت اعتبارات داشته است. در پایان با توجه به یافته های تحقیق پیشنهاداتی ارایه گردید.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 823

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 2 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

MOHAMMADZADEH M. | HOOMAN A.

Issue Info: 
  • Year: 

    2008
  • Volume: 

    33
  • Issue: 

    4
  • Pages: 

    15-26
Measures: 
  • Citations: 

    0
  • Views: 

    1249
  • Downloads: 

    0
Abstract: 

Discriminant analysis is a way for classification of one object or a group to one or more separate groups that are known or unknown. in scientific researches we often use linear or quadratic functions for classification. But in this paper, we suggest a nonlinear discrimination method that uses two nonparametric.regression methods, namely multivariate adaptive regression splines and adaptive additive model in a simulation study, we investigate the application way of proposed methods and comparing them with the ordinary nonlinear discrimination methods via their means of error rates.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1249

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2023
  • Volume: 

    11
  • Issue: 

    1
  • Pages: 

    83-101
Measures: 
  • Citations: 

    0
  • Views: 

    42
  • Downloads: 

    3
Abstract: 

Multilinear Discriminant Analysis (MDA) is a powerful dimension reduction method specifically formulated to deal with tensor data. Precisely, the goal of MDA  is to find mode-specific projections that optimally separate tensor data from different classes. However, to solve this task, standard MDA methods use alternating optimization heuristics involving the computation of a succession of tensor-matrix products. Such approaches are most of the time difficult to solve and not natural, highligthing the difficulty to formulate this problem in fully tensor form. In this paper, we propose to solve multilinear discriminant analysis (MDA) by using the concept of transform domain (TD) recently proposed in [15]. We show here that moving MDA to this specific transform domain make its resolution easier and more natural. More precisely, each frontal face of the transformed tensor is processed independently to build a separate optimization sub-problems easier to solve. Next, the obtained solutions are converted into projective tensors by inverse transform. By considering a large number of experiments, we show the effectiveness of our approach with respect to existing MDA methods.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 42

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 3 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

GLOVER FRED

Journal: 

DECISION SCIENCES

Issue Info: 
  • Year: 

    1990
  • Volume: 

    21
  • Issue: 

    4
  • Pages: 

    771-785
Measures: 
  • Citations: 

    1
  • Views: 

    117
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 117

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

LIX L.M. | SAJOBI T.T.

Issue Info: 
  • Year: 

    2010
  • Volume: 

    1
  • Issue: 

    -
  • Pages: 

    0-0
Measures: 
  • Citations: 

    1
  • Views: 

    173
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 173

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Journal: 

ANIMAL

Issue Info: 
  • Year: 

    2008
  • Volume: 

    2
  • Issue: 

    -
  • Pages: 

    419-429
Measures: 
  • Citations: 

    1
  • Views: 

    146
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 146

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

CHINIPARDAZ R.

Issue Info: 
  • Year: 

    2000
  • Volume: 

    24
  • Issue: 

    2
  • Pages: 

    0-0
Measures: 
  • Citations: 

    0
  • Views: 

    367
  • Downloads: 

    0
Abstract: 

This paper is concerned with the discrimination between two stationary AR(1) plus noise processes in the time domain approach. The distribution of the discriminant function, when the differences between two stationary processes is concentrated in their variances rather than their means, leads to a linear combination of one degree of freedom chisquare random variables. The coefficents are calculated numerically. An analytic method is given by other investigations for ARMA processes, and an extension is given here for AR(1) plus noise processes which have two errors rather than one. The weights and cumulants of the discriminant function are compared using a numerical method

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 367

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

MCNICHOLAS PAUL D.

Issue Info: 
  • Year: 

    2011
  • Volume: 

    10
  • Issue: 

    2
  • Pages: 

    181-199
Measures: 
  • Citations: 

    0
  • Views: 

    1078
  • Downloads: 

    218
Abstract: 

The use of mixture models for clustering and classification has burgeoned into an important subfield of multivariate analysis. These approaches have been around for a half-century or so, with significant activity in the area over the past decade. The primary focus of this paper is to review work in model-based clustering, classification, and discriminant analysis, with particular attention being paid to two techniques that can be implemented using respective R packages. Parameter estimation and model selection are also discussed. The paper concludes with a summary, discussion, and some thoughts on future work.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1078

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 218 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2016
  • Volume: 

    6
Measures: 
  • Views: 

    170
  • Downloads: 

    69
Abstract: 

INDEPENDENT COMPONENT ANALYSIS (ICA) IS A MULTIVARIABLE STATISTICAL ANALYSIS METHOD WHICH CAN BE APPLIED FOR FACE RECOGNITION PROBLEM. THE AIM OF RECOGNITION IS TO APPROXIMATELY ESTIMATE THE COMPONENTS FROM THE RAW IMAGE. COMPONENTS PLAYS AN IMPORTANT ROLE IN FACE RECOGNITION SYSTEMS. CONSEQUENTLY, THESE COMPONENTS ARE USED FOR EXTRACTION OF FACE IMAGE FEATURES. HOWEVER, THESE FEATURES MAY NOT BE APPROPRIATE FOR CLASSIFICATION, SINCE THE ICA METHOD DOES NOT CONSIDER THE CLASS INFORMATION. FOR THE PURPOSE OF OPTIMIZING THE PERFORMANCE OF ICA, THE DISCRIMINANT ICA (DICA) METHOD, WHICH IS A COMBINATION OF ICA AND LDA METHODS, IS UTILIZED FOR FACE RECOGNITION IN THIS STUDY. WE HAVE ALSO PROPOSED PARTICLE SWARM OPTIMIZATION METHOD TO IMPROVE THE DICA PERFORMANCE, IN WHICH PSO IS USED INSTEAD OF THE GRADIENT APPROACH FOR LEARNING DICA. THE RESULTS OF PSO-DICA METHOD CONFIRM OUR IDEA IN CLASSIFICATION EXPERIMENTS COMPARED TO OTHER METHODS. USING PROPOSED METHOD ON YALE B DATASET, GIVES AN AVERAGE CLASSIFICATION ACCURACY OF 92.169% COMPARED WITH AN ACCURACY OF 91.322% USING WHEN DICA AND ACCURACY OF 89.77% COMPARED WITH ICA AND ACCURACY OF 86.18% USING PCA AND ALSO ACCURACY OF 84.76% USING LDA

Yearly Impact:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 170

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 69
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button